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Abstract--The motion is determined for a thin circular disk straddling the plane interface of an immiscible two 
phase creeping flow and moving parallel or perpendicular to the interface. Expressions are derived for the drag 
coefficient on the disk. 

INTRODUCTION 

The motion of a particle moving in the presence of a free fluid-fluid interface is of some 
importance and interest in chemical engineering science. The general motion of an arbitrary 
particle in the presence of such a free interface is a matter of considerable complexity, and 
Chadwick (1976) in some unpublished notes has considered the particular cases of a concen- 
trated point force and a sphere in a two-phase flow. 

In this paper the simplest geometry of particle shape is investigated, namely, the thin 
circular disk and in all cases the disk straddles the interface which is assumed to be 
instantaneously planar. The first flow described is the situation of a disk straddling an interface 
and moving parallel to it. The flow is asymmetric and a new representation of the solution of 
the creeping flow equations is given to construct the velocity field. The velocity and stress are 
continuous at the interface and this leads to mixed boundary value problems for the Stokes 
equation. It is found that the velocity is independent of the ratio of viscosities of the two phases 
and the flow is the same as if the disk were moving edgewise on through an infinite fluid of the 
same viscosity. This follows from the symmetry of the disk where the normal and tangential 
components of stress vanish identically on the interface. The drag coefficient on the disk is a 
simple modification of the drag given for a disk by Oberbeck (1945). The representation for the 
velocity field is new and is obtained using the method of complementary integral representations 
described by Ranger (1972). 

Section 2 generalizes the problem to an axisymmetric body and here only an approximate 
solution is presented. It is shown that the axisymmetric Stokes flow past the body satisfies the 
conditions of continuous velocity and tangential stress at the interface and only the condition of 
continuous normal stress is not satisfied. The case of a sphere is considered in detail and it is shown 
the difference in normal stress is proportional to the difference in viscosities and proportional to the 
inverse fourth power of distance measured from the sphere center. The solution is thus a good 
approximation to the exact solution at large distances and the drag in the two phase flow is related in 
a simple manner to that in ordinary Stokes flow. 

Section 3 deals with the situation in which the disk straddles the interface and is in- 
stantaneously moving perpendicular to it. In this model the velocity and stress are continuous at 
the interface and it is found that the velocity field is independent of the ratio of viscosities and 
the field is the same as if the disk were moving broadside on in an infinite fluid of the same 
viscosity. The drag on the disk is again related in a simple way to the drag in ordinary Stokes 
flow. It is worth pointing out that the disk is the only geometry for which an explicit exact 
solution can be determined for the velocity field. The case of the sphere is excessively 
complicated and it is not clear that a solution for the velocity field exists with continuous 
velocity and stress at the interface. 

Section 4 again deals with the disk in the interface and moving perpendicular to it. However, 
here it is assumed the normal velocity on the interface is zero and that the interfacial tension is 
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sufficiently high to preclude large deformations of the interface. The velocity is thus dis- 
continuous at the rim of the disk and this leads to an infinite drag on the disk. A solution for the 
velocity field does exist and is uniquely determined using the principle of minimum singularity. 
It is found that the velocity fluid is again independent of the viscosity ratio and the velocity 
vanishes on the interface. The flow thus behaves like a circular disk moving through a plane 
containing a circular gap. There appears to be no analogue of this flow for an axisymmetric 
body with non zero volume. 

1. EQUATION OF MOTION AND DISK MOVING 
PARALLEL TO INTERFACE 

The equations of steady creeping flow are 

gradp =/zV2q, div q = 0, [1] 

where q is the fluid velocity, p the pressure and iz the viscosity. A suitable representation for 
the fluid velocity field in which boundary conditions are prescribed on the plane x = 0, is 
expressed by 

q = curl2 {~ [ cos dp } + curl {X f sin ¢~ }, [2] 

where (x, p, $) denote cylindrical polar coordinates and the scalar functions $ and X satisfy 

L2_,($) = O, L-~(X) = 0 [3] 

and the Stokes operator L_t is defined by 

a 2 a 2 i 0 [4] 
L_ , - -~ - f l+~p  P ap' 

Consider now a two-phase flow in which the fluid in the region x -> 0 has viscosity IZ, and in the 
region x <- 0 the viscosity is Iz2. A circular thin disk defined by x = 0, 0-< p -< 1 straddles and 

moves in the interface x = 0 with velocity given by 

qo = t~ cos ~b - 4; sin ~b. [51 

The fluid velocity in the two phases can be represented by 

q~ = curl2 {~  f cos O } + curl {~p f sin d~ } [6] 

where ipj and Xj satisfy [3] and j = 1,2. If qj. = Ux ~j) + up~J~lJ + u~°~tk, then 

,x°' = ~'1"0-~ ' L_,(,,)} cos *, [7] 
to Ox"-p 

{ 0. ( !  + cos , ,  tg] UoO'= -~p ~O aX ] p'J 

u,O, = f 1 a~6-+ -"[p-'~ *gx ~ ( ~ ) }  sin ¢k [9] 
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An appropriate representation for $j is 

lJ!Jj = XVj, L-1( Vj) = 0, j= 1,2. 

Nowonthediskx=O,O~p~l 

WI 

[Ill 

and in terms of Vi and xi, [ 111 are equivalent to 

Vj = i pz, Xi =;p2 at x=0, OSpPl. [121 

The normal component of velocity 

I&o’ = 0, x =o, p=l 1131 

so that the condition of zero normal velocity on the interface is satisfied as well as on the disk. 
The boundary conditions on the interface require continuity of the velocity as well as stress on 
x. = 0, p > 1. These will be treated in turn. 

Continuity of tangential components of velocity on the interface 
These conditions are equivalent to 

a v,- v* 
G-7 ( > +Y=O, 

-$(Yr vz)+- 
a x1-x2 =o 

( > ap P ’ I 

t141 

at x = 0, p > 1. These boundary conditions can be satisfied by taking 

v, = v2, XI =x2 at x=O,p>l. WI 

Normal component of stress continuous at interface 
The normal component of stress is expressed by . 

Pi!i = _Pj+2H% 

where the pressure pi is found from [61 and is given by 

In terms of the stream function $j [la] becomes 

ptib= _CLia E p -&-d~)+~ ~--&(~)]}c0s6 [ 
= 1 a+%_+ a 

paxJ p ax L(#ji) cm 4 
1 

WI 

1171 

= 0, x=O,p>l. 
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P (1) - (2) - xx - Pxx -0 onx=O,p>l. 

Tangential components of stress continuous at interface 

There are two components of tangential stress pzi and ~$1. The first is given by 

The stress [21] is continuous at the interface if 

that is if 

(I) - (2) 
Ppr - PPX atx=O,p>l WI 

at x = 0, p > 1. The second tangential stress is given by 

=~j[-~~+f~-,(k)-~~-~~~)}Sin~ 

2 av a 1 ax. 
=-pj -2--L+--1 

( p ax app ax 1 
sin+ 

The stress [26] is continuous at the interface if 

Equations [26] and [27] imply 

Equations [23] and [28] are both satisfied if 

av, av, 
cL1,,=p2,,. 

atx=O,p>l. 

I231 

1251 

[%I 

[281 

1291 

Solution for Vi and xj 
First consider the mixed boundary value problem for Vi. Vj satisfies 

L-1( Vj) = 09 t311 
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subject to the conditions 

1 2 V j = ~ p ,  at x = 0 , 0 < p _ < l  [32] 

on the disk. On the interface 

V, = V2 at x = 0, p > 1 [33] 

OVI OV2 
t~l -~-- = t~2"~- x a t x = 0 ,  o > l .  [341 

In addition the fluid velocity vanishes at infinity which is satisfied ff Vj o 0 as x2+ 02o  oo. The 
mixed boundary value problem for Xj is the same as that posed by [31] to [341 with Xj replacing 
vj. 

Method o[ complementary integral representations 
Appropriate integral representations for V~(x, p), see Ranger (1972), are: 

fo 'vl(x,y)y.dy (®ul(x,y)ydy 
Vl(x, p) = (p2_ y2),n = Jp (y2'_ p~),n [35] 

for x->0 

V2(x, t)) = fp v2(- x, y) dy _ f** uz(- x, y)y dy 
. J0 (02_ y2),n - jp (y2_ p2),n [361 

for x <- O. (uj, v~) are conjugate two dimensional harmonics even and odd in y respectively and 
expressible in the form 

+ ivj = fo®fj(k) e -t(x+iy) dk tlj [371 

where [j(k)are real functions of k. 
Now on the disk 

1 2 fo' vL(°' y)ydy Vj(o, p) = ~ p = (p2 _ y2)ln , 0 -< p < 1. [38] 

The inverse of the Abel type integral equation is 

) 2 0 fYVi(o,p)pdp 2y 0 < - y < l  [39] vj(o, y = ( y 2 _ p 2 ) , , 2  = , r  

and j = (1, 2). Again on the interface 

V,(o,  p) - V2(o, "~ - fp [v1(o, y ) -  02(0, y ) ]y  dy , ' ,  - - 2 [401 
J o  (p _ y2)In 

_ fP [v..1(o, y ) -  v2(o, y)]y  dy _ 
- Jo (pZ_ y2)ln ~ - 0 ....... [41] 

for p > 1. Hence from [41] 

v,(o, y) = vz(o, y) for lyl > 1. [421 
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Also on the interface 

[ 0V, aV2~I I "~ ( # '  ~xaU'+ ~2"~'x ]Ou2'~lx=°Y dy 

V" -h ; -    -if/Ix=0 = g C -  p2),,2 

for p > 1, and this implies 

Ou,+ du2 Or, + ~72 

or equivalently 

= 0  

where A is a constant. Thus, 

x=0,1vl>l 

#lvl(o,y)+tx2v2(o,y)=A, l y l > l  

I43] 

[441 

A 
= = B say. [461 vt(o, y) = v~(o, y) g ,  + #2 

for [y[ > 1. It is observed that 

dVt aV2 /zl --~- =/22--~- = 0, for x =0,  p >  1. [47] 

so that the stress vanishes over the interface since a similar result is valid for )¢t and Xz. 
The solution for vi(x, y) can now be determined by standard Green's function methods and 

is expressed by 

x ~ [481 = -4(~3- v~(o, s) ds 
1) j(  x ,  .v) x 2 + (s - y)2 

where 

v~(o, s) = 2 ] - s  Is l < l  
77 

= B s > 1 [49] 

= - B  s < - l .  
Thus 

~o'vj(x, y)y dy Vj(x, p) = Xi(x, p) = (05 _ v2)o2., x > 0 [501 

where vi(x, y) is determined from [48] and [491. Explicit evaluation of [48] yields 

. 2y {tan-'  I ~r.~iog rxZ.+ (1 - y)2] 
vj(x, y) = -'~ x Y } -  tan-' { - Z ~ } +  [ x 2 + ( l  + y)~J 

+ B [tan-~ ( - ~ ) -  tan, t (L~-Y--)]. [511 

To determine the constant B, consider the velocity components on x = 0, p > 1. It suffices to 
consider uo °) which is given by 

[451 
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where on calculation 

_ p2 
V ~ ( o , p ) - ~ s i n - ' ( ~ ) + ( B + l ) ( p z - 1 )  m. [531 

Hence, 

u 2 ' -  1 avi o ap ¢ ,p)cos  

- _  1 ( B  1 1 
- -  11" C O S  

[541 

[551 

Since the velocity is finite as p ~ 1 +, the singularity is eliminated by choosing B = 2/¢r. vi(x, y) 
is now given by 

x 
v~(x,y)=--~(y-l) tan -j - t a n - '  + w---~ log x2 + (1 + y)Z. [561 

Substitution of [56] in [50] yields Vs(x,p)= Xj(x,p). Now the velocity field is clearly in- 
dependent of the ratio of the viscosities of the two phases so that basically the solution 
represents the edgewise motion of a disk through an infinite fluid. This follows from the fact 
that the stress vanishes over the interface. The drag on a disk of radius a moving with speed V 
is then 

D = 3 Va(tzl +/zz). [57] 

2. APPROXIMATE SOLUTION FOR AXISYMMETRIC BODIES 
MOVING PARALLEL TO AN INTERFACE 

Again, let (x,p, ~) be cylindrical polar coordinates and consider an axisymmetric body S 
with the x axis as axis of symmetry moving parallel to an interface ,k = -  + ¢r/2 with velocity 

qo = v[ [581 

in an infinite two phase flow. The viscosity for -7d2_< ~ <~d2 is ~l and for ¢d2- < ~ < ~r, 
- ~d2 -> ~ --- - ~r is/z2. The flow is clearly asymmetric but an approximate axisymmetric motion 
will be considered. 

Let the complete flow field be represented by 

q = curl (-7~ d )  [59] 

where 
A 

q = uxl + ua6 

and 

1 t9 0 _ I 0 ¢  
l l p  . . . .  

p [Ix [6ol 

¢ satisfies the Stokes repeated operator equation 

L~,(¢) = 0 [61] 
MF Vol. 4, No. 3-.C 
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where L_j is defined by [4]. On the boundary of S 

- v =  1 0~0 0 :  l o 6  
p o p '  p Ox" [62] 

At infinity $ -  0(r), r = (p2+ x 2 ) ~ n  ~, that is, the flow behaves like a Stokes couplet located at 
the origin. The velocity defined by [59] is continuous at the interface 4, = _+ 1r/2. The 
components of tangential stress on the interface are 

1 0 
P ~  : ~p ~ uo = O. [63] 

and 

1 Oux 0 px, = Kp ~ :  " [641 

Hence, the velocity and tangential stress are continuous at the interface and the only condition 
not satisfied is the continuity of normal stress. This is expressed by 

p ~  = p ~ ,  [65] 

that is, 

2/~2 (2) 
" p, + u / "  = - p2 + P up [66] 

where the pressure Pi is obtained from the equations 

0---tP = - -~-  ~0 L_.(~,), ~ = - ~  0 - - r  '.',' [67] 
Ox p Op Op p Ox ,-,-t~,ep. 

If x = r cos 0, p = r sin 0, consider the particular case of a sphere expressed by r = 1. The 

stream function is 

and the pressure 

The normal stress is 

V ( 3 r - ~ )  sin2 0 [68] 

3 Vtzj cos 0 
p~ = _ 2r 2 

p ~  = 3 V#i cos 0 [69] 
2r 4 • 

Thus, the difference in normal stress is 

P ~ - P ~ 4 ,  3 V(vq- /~ : )  cos 0 
........ 2r 4 [70] 

which is small if either ( m  - t~2) is small or if r is large. The drag on the sphere is 

D = 3,rVa(tz~ + I~:), [71] 
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where the physical radius of the sphere is a. There is no component of force on the sphere 
perpendicular to the interface. 

More generally if the drag in ordinary Stokes flow is known to be 6¢rValza, then the drag in 
two phase flow is given by 

D = 3¢rVa(Iz~ +/z2)a. [72] 

3. AXISYMMETRIC FLOW, DISK MOVING PERPENDICULAR 
TO INTERFACE 

For axisymmetric flow the velocity may be expressed by 

q = curl {Z~ d} [73] 

where ~b satisfies the Stokes repeated operation equation 

L2=,(~,) = 0 [741 

and the operator L_~ is defined by [4]. The flow components are given by 

] 0 ~ ,  1 0¢, 
Ux = - - - - ,  u o  = - - - .  [ 7 5 1  

p Op p Ox 

In the flow to be considered in this section the thin circular disk x = O, 0 -< p -< 1 straddles the 
interface x = 0 and is moving perpendicular to it. With the notation of the previous section, the 
stream functions for the flow in the two phases may be represented by ~b~ (j = 1, 2). The velocity 
is then given by 

~ = curl {Z~/~},  (j= 1,2). [76] 

An appropriate representation for ~bj is given by 

where Vj and Uj both satisfy 

L-I(Uj) = L-I(Vj)  = O. 

The boundary conditions on the disk require 

~)--=I~=-I 1 
#~ - p Op 

p o x  

[77] 

and these conditions are satisfied if 

1 z u j = ~ p  , vj=o, 

[78] 

at x = 0 ,  0 -< p ~ 1 [79]  

at x =0,  O < p -  1. [80], 
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The velocity is continuous on the interface and this is satisfied providing 

UI = U2 and V1 = V2 at x = 0, p > 1. 

Now the tangential component of stress is defined by 

~ , _  / a . x  (" a~/"~ 
p . ,  - ~'~ t,--~-p + ax / 

p k ~ x - P ~ / / •  

The tangential component of stress is continuous at the interface, that is 

which reduces to 

p (olx) _ _(2) -tJpx a t x = O , p > l  

~V l ~V 2 
Zt --~-x =/~2--~- x a t x = 0 ,  p > l .  

The normal component of stress is defined by 

OaUx (D 
p ~ = - pj + 2 ~  a--~- :  - p~ - ~ ~2q, j 

p dxOp 

where pi is the pressure obtained from the creeping flow equations 

a-~P = - ~  ~ L ,(,I,.), 
~gp p tgx - "~ 

The normal stress is continuous at the interface 

p U ~ _ p ~  xx-  a t x = 0 ,  p > l  

which is equivalent to 

= _ _~ a 
t - i (~bi) .  ax p aop 

d ( i )_  ~9 _(2) 
t~p p= x p - -  -~pt'X~ at =0, >1. 

After some calculation it is found that [88] reduces to 

£~3UI •3U 2 
/ ~ l - ~ x  =/~2--~x a t x = O , p > l  

aU1 0U2 
lzl -~--X- = t~2-ff~- at x = O, p > l. 

which is equivalent to 

In addition the velocity vanishes at infinity and this is satisfied if both 

[811 

[82] 

[83] 

[84] 

[85] 

[86] 

[87] 

[88] 

[89] 

[90] 

, (U~, Vi)~O as x2+ p 2 ~ .  [91] 
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To sum up the problems for Uj and V i are mixed boundary value problems which may be stated 

in the form: 
Uj satisfies [78] subject to the conditions 

u i= lp  2 at x = 0 , 0 _ < p <  1, 

UI=U2 at x = 0 ,  p > l ,  

OUi 0U2 
- '~- '-  ----- /,L2 " ~ X  a t x = O , p > l ,  

U j ~ 0  a s  X2+p 2 '') °° • 

[921 

The mixed problem for Vj is defined by 

V i i 0 ,  atx=O,O<-p<l ,  

VI = V2, at x = O, p > l, 

OVI = 0V2 
/L i -~-- /~2 -~-- at x = 0 ,  p > l ,  

Vj~O a s  x 2 + #  2 --). °° . 

[931 

It is readily shown the solution of the latter problem for Vj is identically zero. 
To solve the problem for Ui (j = 1, 2) it is convenient as in the previous section to introduce 

complementary integral representations as follows: 

fo ' Vi(x, y)y dy = f** ui(x, y)y dy x >- 0 U#, p) = (p~_ y2)112 jp (y~ .  p~)ll~ 

= fo' vi(- x, y)y dy = f =  ui(-2x, y)y dy (p2 -- y2)112 JO (y  -- 92)1/2 X ~ 0 

[94] 

[95] 

where ui, v~ are conjugate two dimensional harmonic functions of x and y, even and odd in y 
respectively. The boundary conditions on the disk require 

Uj(o, p) 1 ~2_ fP y/(o, y)y dy 
= 2 v - Jo (p2_ y2)1/2 at x = 0, 0-<p < 1. [96] 

The solution of the Abel type integral equation is 

2 
vj(o, y) = ~r y' 0 -< y -< 1. [97] 

On the interface 

so that 

Again, 

Ul(O, p) - U2(o, p) = fo  [Vl(O, Y)(p2_- v2(O,y2)zny)ly dy = f f  [v,(o, y)(p2_- v2(O,y2)z/zy)ly dy= 0, 

Vl(O, y) = v2(o, y), y > 1. 

aV1 a.vAI fp° [ Out+ Ou2~l y dy 

[981 

[991 
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for P > 1, so that on x = 0 

Ou,+.2ou2=. Ovj(o,y)+ ov2(o,Y)_o, 
#,l ~x  ~ Ox ~,1 Oy lZ2 Oy y > l  [ 100] 

or equivalently 

IzlVI(O, Y)+ I.t2V2(o, y )= A, y > l  

where A is a constant. Thus from [98] and [101] it follows that 

[1Oll 

A vl(o, y) = v2(o, y) = - -  = B, y > 1. 
g,i +/z2 

[102] 

Now for p > 1, 

( '  vi(o, y)y dy _t_ (P vi(°, Y)Y dy Ui(o, p) 
Jo (p2__ y2)112 -- J t  (p2__ y2)1/2 

2 (i y2dy + B  (p y d y  
: g Jo (p~- y2)"~ J, (p~- y~)"~ 
: ~ sin-' 1+  ( B - l ) ( p 2 -  1) ''2 

P 
[103] 

and 

p Op Ix=o 'n" p 
[104] 

Thus the velocity is singular at the rim of the disk unless B = 2Dr, so that v(x, y) can now be 
uniquely determined by the Green's function formula 

x (= vi(o, s) ds 
vAx, y)= ; j_®x2+ (y _ s)2 [105] 

where 

2 
vj(o, s) = --, JsJ > 1 

71" 

2 
= -- s > 1 [106] '/7"' 

2 
= - - ,  s > - l .  

77 

This is the same problem as [49] and the solution is expressed by [51] viz. 

v,(x, y)= ~ {tan-' ( ~ _ Z ) - t a n - '  ( Z _ ~ ) } +  ~ log {x x:++ (1(1-+ y)2jY)V[ 

+ ~2 {tan-1 ( S - ~ )  - tan-I ( ~ - Z )  ]. [107] 

U i can now be determined from the formula 

U~(x, y) = (p2 _ y2)m x > 0 

= fo p vj(- x, y)y dr t (p2 _ y~)m x < O. 
[108] 
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It is observed that the velocity is independent of the ratio of viscosities and is the same as if the 
disk were moving broadside on through an infinite fluid of the same viscosity. The drag on the 
disk is finite and is given by 

where I? is the velocity and a 
velocity on the interface is expressed by 

D = 8 ~Sa(al + a2) [109] 

is the physical radius of the disk. The axial component of 

u~°) = - 2  sin-I (~)  ~r [!10] 

which decays like p-i as p~oo. In this model the disk carries the interface with the disk as it 
moves through the fluid except the interface is not disturbed at infinity. 

4. DISK MOVING ACROSS AN INTERFACE AT REST 

In this model the disk is moving broadside across an interface x = 0 in which there is zero 
normal velocity. It is evident there is a discontinuity in the velocity at the rim of the disk and 
the drag on the disk is infinite. However, the velocity field is derived since it is possible to find a 
field which converges analytically even though the drag is logarithmically infinite. 

The fluid velocity field is again axisymmetric and may be written as 

~ = curl {Z-~ 0g} j = l , 2  [111] 

where the stream function 0r satisfies the Stokes equation 

The velocity components are 

L2t(~b~) = 0. Ill2] 

u ? ) =  u;J) = [113) pap '  pax"  

If the disk is moving broadside on with unit speed the boundary conditions on the disk are: 

u ~ ) = - l ,  u~)=O at x = O , O < p _ l .  [114] 

On the interface the normal velocity is zero, that is 

u~°) = 0, atx=O,p>l. [115] 

Also, the tangential component of velocity is continuous on the interface and this requires 

up( I)= u) 2) at x = 0,  p > 1. [116]  

The tangential component of stress is continuous at the interface, that is 

( I )  _ (2) p ~ - p ~  atx=O,p>l. [117] 

The condition of continuous normal stress cannot in general be satisfied and it is implicitly 
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assumed that the interracial tension is sufficiently high to preclude large deformations of the 
interface. 

In addition the velocity vanishes at infinity. This requires 

(uJ j), upti))~0 as x2 + p2---) oo. [118] 

In terms of the stream function 0i the boundary conditions are: 

(i) l 2 Oi(o,p)=~p, at x=O,O-<p-<l  [1191 

(ii) ~-~(o,p)=O at x=O, 0_<p_ < 1 [120] 

(iii) 

(iv) 

(v) 

Oi=A a t x = 0 ,  p > l  

1 001 - 1 o02 
p Ox p Ox a t x = 0 ,  p > l  

• / t0 0 1  0 01 

" V ~ - x  -~-p +o so : ~' - + 

(1 d~/, 1 d - ~ ' ~ 0  as x2+p2~oo (vi) ~,p Op -p Ox / " 

[121] 

I122] 

[123] 

[1241 

An appropriate representation for the stream function 0j is expressed by 

v,) 
O~= u J -  \ ox - [125] 

where Uj, Vj again satisfy [78]. The problems for U~ and Vj are decoupled and may be stated as 
follows: 

l 2 U~=~p atx=O,O<_p<_l 

= A  a t x = 0 ,  p > l  

1 ouj]_  o as 
(:o00 -p Ox / x2 + P2~°° 

[126] 

and for Vi: 

V~= V2=O at x = O , O < # _ < l  

Vt= V2 a t x = O , o  > l  

OV~ OV2 
#t --~- = #2--~ - a t x = 0 ,  p > l  

Vi->0 as x2+02-->oo. 

[127] 

The solution of this latter mixed boundary value problem is identically zero. The solution of the 
former boundary value problem for Vj can be found using a Hankel transform. A suitable 
representation for the solution of [126] in x-> 0 is given by 

VI(x, p) = A + ~ /(k)e-~pJl(kp)k dk [128t 
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where ll(kp) is the Bessel function of the first kind and first order and f(k) is to be determined on the 
plane x = 0 

fof(k)Mi(kp)kdk=~p2-A, O<-p-<l 

=0 ,  p > l .  [129] 

The inverse formula for the Hankel transform yields 

f(k)=fo 112(ip- A)Jl(kp)dp 

Jl(k) + / 1\ Jo(k) =--'~- ~A--~) ~ . [130] 

Thus, Vj(x, p) is expressed by 

Vi(x,p)= A+ ~o ® (Ji~k___.._))+ (A 1)jo(k))e_~pji(kO)dk [1311 

where the constant A to the present is arbitrary. The singularity in the stresses and vorticity at 
p = 1 is minimized if A = 1/2 so that 

1 f® Jl(k)Jl(kO) e-~ dk, Vj(x,p)=~+p jo -~ x > O. [132] 

It is readily checked that [132] gives rise to an infinite force on the disk as may be expected. It 
is also noted that since V i = 0, there is no tangential velocity on the interface. Also the velocity 
field is independent of viscosity so that the motion is the same as if the fluid were of one 
viscosity in which a disk is moving through a circular gap in a rigid plane wall. There is no 
tangential stress on the interface. 
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